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Abstract

A theory of local and global mechanisms of heat generation and distribution in
carbon-fiber-based composites subjected to an alternating magnetic field has been proposed. A
model that predicts the strength and distribution of thermal generation through the thickness of
carbon-fiber-based laminated composites has been developed. Earlier work has established the
distribution of point voltages in the plane of the laminate that exist in the form of potential
differences between fibers in adjacent plies in a cross-ply or angle-ply laminate system. In this
work, a capacitive-layer microstructure that models the actual fiber-reinforced-polymer
microstructure from a square-packing assumption to a series of conductive parallel plates is
formulated. An effective parameter of heating, gamma, that establishes the distribution of
heating through the thickness is defined. Extreme gradients in this thermal source can exist with
peaks occurring at the interfaces of ply-ply orientation changes. An optimization study
establishes the effect of various microstructural and macrostructural parameters on the heating
parameter, gamma. Several parametric studies are performed on the computer algorithm, which
calculates gamma to further analyze these effects.
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1. Introduction

Induction heating involves the application of an alternating magnetic field that subjects an object
to a distribution of magnetic flux. Experimental observations have shown that unidirectional carbon-
fiber laminates subject to a uniform field do not heat. In contrast, cross-ply laminates exhibit
significant heating. Two mechanisms of heating have been identified that result from an alternating
rotational emf induced by the magnetic field: (1) joule losses in the carbon fibers induced by the
eddy currents and (2) dielectric losses in the polymer. For joule losses to dominate heating, carbon
fibers must be in good electrical contact with each other in adjacent layers of the cross-ply layer.
Experiments have been conducted on cross-ply laminates that incorporate additional polymer
interlayers. In this case, significant heating occurs for microstructurés that eliminate fiber-fiber
contact. This observation can be explained by proposing that the dominate mechanisms for localized
heating result from dielectric losses in the matrix region separating fiber-fiber junctions, as
illustrated in Figure 1 [1]. In this situation, a magnetic field B induces electric fields within the
carbon fibers, creating a potential difference V across the polymeric region of thickness h. A “planar
grid” model was developed to explore the consequence of local heating resulting from dielectric
losses in the matrix [2]. In this model, two crossing layers of filaments separated by a polymer layer
of thickness h were treated as a planar grid of capacitors. The transfer of energy from an applied
magnetic field generated by a Helmholz coil was related to the resulting distribution of potential
differences in the polymer plane separating the two layers. A nondimensional effective parameter of
heating was introduced as the voltage per unit magnetic flux per unit frequency of the applied

~magnetic field.

Qualitative temperature distributions over the plane were observed by placing liquid crystals on
the surface of a thin-section cross-plied carbon/polyetheretherketone laminate [2]. These
observations showed local heating at the fiber crossover points, as predicted by the planar-grid
capacitance model. Furthermore, the temperature distribution induced by a circular coil was in
qualitative agreement with the predictions. Laminates were fabricated with various thicknesses of

polymer layers between the laminae. The local heating at the fiber-fiber junctions persisted,




Polymer Region

Figure 1. Induced Current Due to a Transverse (Normal to the Plane of Fibers) Magnetic
Field B in a [0/90]s Cross-Ply. A Matrix-Rich Region of Thickness h Exists Between
the Orthogonal Plies in Such a Laminate. A Potential Difference V Exists Between
the Intersecting Fibers.

even though no fiber-fiber contacts were possible; however, as the thickness of the polymer layer

was increased, the intensity of heating was diminished.

In this work, the previous treatment is extended to account for multilayer interactions that occur
through the thickness in a carbon-based composite. Previous work modeled the interaction between
single transverse fibers using an electric field concept [1] and the planar distribution of current based
on an equivalent-resistance assumption [2] resulting in a qualitative view of thermal generation. In
the present treatment, it is shown that the multilayer systems can give rise to complicated potential
differences between the fibers through the thickness of the laminate. First, a capacitive layer analogy
is developed and simplifications are introduced to provide estimates of the effective fields within the
polymeric region that can be consolidated into an effective thickness parameter for the polymeric
material. Through this approach, the effects of a complex distribution of potential differences can be
captured in the form of a nondimensional heating parameter. Parametric studies based on this model
identify the role of various microstructural features in the induction welding of carbon-fiber-based

thermoplastic composites. Experimental evidence is presented to support these predictions.



2. Formulation

Figure 2 illustrates an idealized system of two orthogonal plies, each containing three fiber
“layers,” separated by a distance hy = 2h;, as shown. In accordance with the planar grid model [2],
each fiber layer pair between the adjacent plies of the 2-ply system is initially assumed to have the
same potential difference. For example, the potential difference between fiber layer no. 3 in the 0°
ply and fiber layer no. 3 in the 90° ply is initially assumed to be equivalent to the potential difference
between fiber layer no. 3 in the 0° ply and fiber layer no. 2 in the 90° ply. Each of the n*=3*=9
fiber layer interactions is initially assumed to have the same potential difference as calculated by the
planar-grid model. This implies that each fiber-fiber interaction creates a complicated electric field
between two nonparallel conducting cylinders. As an example, for a 20-cm-square (~8 in.) 2-ply
cross-ply laminated plate, there are approximately 2.5e + 11 interactions to consider. Consequently,
a simplified model is needed to estimate the electric field in the polymeric regions and, in doing so,

define an effective parameter for the thickness of polymeric material, h, through which the field acts.
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Figure 2. Simplified Representation of the Cross Section of a [0/90] Cross-Ply Laminate.

Electric field lines between fibers act almost entirely in the ﬂnough-thickness sense, interacting
with nearly all of the polymeric volume in the region between the two fibers. Under these

conditions, it is plausible to represent rows of fibers as contiguous conductive material.



Furthermore, the fibers can be taken to be perfect conductors in comparison to the insulating
polymer. With the assumption that the fiber volume fraction and laminate thickness are continuous
in an elemental planar region, the electromagnetic interaction between two arbitrary fibrous layers

can be treated as conductive plates separated by some particular distance, h.
Initially, consider just two such interacting conductive plates making up a “capacitive layer” pair

in the x-y plane. A potential difference exists between the plates that is a function of the planar

coordinates, x and y:

V(x,y) =-[E(x,y)-d¢ = E(x,y)h, )

where E(x,y) is the electric field acting through the distance, h, separating the two plates. Therefore,

a charge distribution exists:

q(x,y) = €,k§ E(x,y)-dS, 2

where q(x,y) is the coulombic charge, &, is the permittivity of vacuum, K is the relative dielectric

constant of the material, and S is the Gaussian surface vector. If some elemental surface area AA is

considered,
q(X,y), =&k = gKE(X,y)AA 3)
or
q(x,3), = LB, 4

If AA is taken large enough such that its linear dimensions are much greater than h, the capacitance

at the point (x,y) can be obtained:



C(X,¥)aa = q(x,y) _ &KE(X,y)AA _ g KAA .

= &)
V(x,y)  Ex,yh h
The heating at point (x,y) can now be written as
W(X,¥)as =0tand C(x,¥) 44 V(X,¥)%, (6)

where ® is the angular frequency of the electric field and tand is the imaginary part of the complex

dielectric constant for the polymer. Incorporating equation (5) for the capacitance yields

2 BV

h ™

WX, Y)as = mtanaﬁ’;h%wx,y)

Note that the quantity /h is equivalent in units to 1/R, where R is a resistance indicating that
dielectric heating follows a joule-type loss relationship. In the planar grid model of Fink,
McCullough, and Gillespie [2], fairly large (2.5-cm square) element sizes (AA) were determined to be
satisfactory representatives of the potential distribution for centered-coil problems. It was shown that
the gradient in V(X,y) in the plane is much steeper for corner- or edge-placed coil arrangements due
to the nature of eddy current formation in cross-ply laminates. Corner- or edge-placed coil

" arrangements require a finer mesh for accurate in-plane voltage analyses.

As noted previously, a through-thickness model must account for many parallel-plate capacitive
interactions. Figure 3(a) illustrates three planar fiber layers above the 0°/90° interface and three
below. The matrix interface region between the 0 and 90 is assigned a thickness of hy; the thickness
of the matrix layer within both the 0 and 90 regions is assigned the thickness d*. The quantity d* is
dependent upon the volume fraction of fibers in a ply and the packing geometry. For this example,
nine pair-wise fiber layer interaction combinations are possible. Each isolated pair initially carries the
same potential difference, V(x,y); however, the separation distance, h, varies with each. For each

isolated pair, the equation for heating, equation (6), holds. However, as the isolated pairs are brought
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Figure 3. Series of Capacitive Layers Representing (a) a [0/90] Cross-Ply Laminate in Which
Each Ply Consists of Only Three Fibers Through the Thickness on Average and (b)
a Parallel Plate Capacitor With a Conductor Replacing Some of the Dielectric
Material.

together to form the overall layered structure, the capacitance and voltage effectively change due to
the presence of, N, intervening conducting fiber layers, each of thickness df*, between the fiber

layer pair under consideration.

The introduction of a conductive slab into a capacitor effectively decreases the distance between
the charged plates. Figure 3(b) illustrates the situation in which a conductor is introduced within a
capacitor containing a dielectric. A is the area of the charged plates in the capacitor, and q is the

charge on each plate. Before the conductive slab is introduced,



C — 3

and
S L ©

C gAk
After the slab is introduced,
Cpy =08 __Coa (10)
h
and

Vncw= q =Vold(l_—b—o')’ (11)

where by is defined in Figure 3(b) as the thickness of a conductive slab that replaces dielectric material
in a parallel-plate capacitor. The capacitance is increased by the same amount that the potential
difference is decreased. However, since heating is proportional to CV?, the heating rate, from
equation (6), is decreased by a factor of (1 - bon). This decrease in heating can be accounted for by
an effective (1/h) value for each possible fiber-fiber interaction through the thickness. In the
following discussion, the quantity by of Figure 3(b) is equivalent to the summation of effective

thicknesses of fiber layers (conductive slabs) separating the two fiber layers under consideration.

The effect of several interactions can be illustrated for the [0/90] laminate of Figure 3(a). The
plies of this laminate are assumed to have only three fiber layers for this discussion. The “upper” fiber
layers are labeled v, u,, and u; and the “lower” fiber layers are labeled 1, I, and 1;. The thickness of




the region between the 0° and 90° plies is labeled hy. The polymeric regions are labeled j=1, 2, or 3.
Table 1 summarizes the nine possible fiber-fiber interactions and the values of 1/h for each polymeric
region between fiber planes. The quantity d* is the capacitive layer model’s value for the distance

between conductive plates (i.e., the thickness of the polymer regions).

Table 1. Individual Inverse Fiber-Fiber Interaction Distances for an Ideal Cross-Ply
Laminate in Which Each Ply Consists of Three Fiber Layers Through the Thickness

Total Per Polymeric
Region

2 2+a d

2= (b, +id")’

2246 (°

zZ (h, +id"}

2 2+a h0
22 (b, +id" )

s=2i=a (h, +id")

2T )

Notes: A= (ho+ d*)%,
B = (ho + 2d*)?,
C = (ho + 3d*), and
D = (ho + 4d*)%

The distance between u, and 1, is ho and, since there are no other fibrous conductive layers
between them, 1/h = 1/hy. For the interaction between u, and b, labeled as (1,2) in the table, there are
two polymeric regions to consider but only one fiber-fiber interaction. The total distance between u;
and I, is ho+ d* so the total 1/h for this interaction is 1/(ho + d*). However, the heat generation is

divided between two polymeric regions; one region has thickness hy and the other has thickness d*.



Therefore, the fraction of heating in each is represented as hy/(ho + d*) and d*/(ho + d*), respectively.

The total heating in each region, then, is given by

1Y? _ h, 1 _  h
1) - _ = — (12)
h )y hy+d hy+d (h0+d )
and
1" q 1 da
(_) LN . (13)
h ) ho+d ho+d (b, +d")

for the j = 1 and j = 2 regions, respectively, of the (1,2) interaction. The remainder of Table 1 is
completed accordingly. The column labeled “Total Per Polymeric Region™ gives the total effective
inverse distance for each polymer region taking into account all fiber-fiber interactions. The
summation of these terms gives the total effective inverse h for the ply-ply interaction. From here on,
this summation is termed the “gamma parameter” and is given the symbol ¥; for the j** polymeric

region through the thickness.

This example gives the results for a laminate with only three fiber layers above and below the ply-
ply interface. The general case for a two-ply laminate consisting of m fiber layers in the “top” ply and
n fiber layers in the “bottom” ply is given in equations (14) and (15) for the effective inverse h

parameters 7; and Yo, respectively.

cff m—ln+a-1 h
(1) =( 1.)=zz-———° - and oae
h)o (B f == (b, +id")
1 i 1 m=1 n+a-1 d’
i) 2 e 142
) AR i) a=it = (ho +id )

where j=1, ..., m;



(_1_)“‘ _(1 ] Cwtmgme d (14)
b )iy \B" i o5t & (b, +id"f

where j=1, ..., n; and

1" (1 gl 1 15
h total - h‘ total - a=0 i=a (hO +id‘ ) ‘
Equations (14a) and (14b) are identical if m =n.

Quantities of special interest are the thermal energy (heating) at the interface of two adjacent
plies represented by vy, the total heating in the two-ply laminate represented by Yiow1, and the ratio of
these values, which represents the fraction of total heating that occurs in the interface region. To
qualitatively evaluate the role of these parameters, it is useful to replace equations (14) and (15) by

integral forms; viz.,

1 (m-1)(n+a-1) b .
- VY dida . ( 1 6)
d a=0 i (b + 1)

" E

where b = hy/d*. Equation (16) can be approximated as

7 = 1 bh{(b+m—le+n-—l)J. an

d’ b(b+n+m-2)

For the case where m = n, this can be further reduced to

_1 (b+n-1) |
nEY bm{b(bun—z)]’ (1%

Likewise, for the total effective inverse h,

10



1
d*

[clnr—r1)-(sns—s)- (tint—t)+ (bInb-b)], (19)

'Ytota.l =

where

r=b+n+m-2,
s=b+m- 1,and

t=b+n-1.

For the case where m =n,
'ymlzdi_(glng—Zhlnh+binb), (20)

g=b+2n-2,and
h=b+n-1.

The optimization of overall energy production is obtained by the maximization of equations (17) and

(19). These conditions yield the requirement that m = n be maximized and hy be minimized.

If equations (18) and (20) are divided by the volumes over which they act and the ratio of the two
taken, the ratio of heating is obtained at the interface to heating in the laminate (equation [21]). In
welding operations, it may be desirable to preferentially (or nonpreferentially) heat the interface so

this ratio should be as large (or small) as possible.

Vi
b b @
'Ytotal 27, — Yl

b+2n

11




where

1 (n—1)1n[912“—_2).

7 =
b+2n b+n-1

Maximization requires that ply thicknesses, m = n, be maximized and that the interface thickness, h,
be minimized as before. Therefore, increasing heating by either increasing ply thickness or

decreasing hy also increases the preferential nature of heating at the interface.

As implied earlier, the quantity d* is related to the volume fraction fiber (X;) and the
fiber-packing geometry. Several ideal packing geometries exist; the most common are rectangular,
square, and hexagonal. A square-packing assumption was used for this study for simplicity and
adaptability to the capacitive-layer model. As a caveat for this assumption, rectangular and
hexagonal packing geometries were analyzed separately and, with deference to the more
straightforward square-packing geometry, were found to have no significant influence on the
through-thickness potential difference results when realistic thicknesses of composite laminates were
considered. Figure 4(a) shows the parameters involved and Figure 4(b) shows the modeled system
with its corresponding parameters. The quantity a is the dimension of the unit cell and is equivalent
to the summation of the fiber diameter d; and the distance between fibers d. The quantities d¢* and
d* are the fiber diameter and fiber separation dimensions corresponding to the model’s unit cell. The

unit cell dimension a is taken to be constant, establishing the condition that
d+d, =d" +d; (22)

and the fiber volume fraction remains constant, requiring that,

X, = - (23)

12
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Figure 4. Unit Cells for (a) Square-Packing Assumption and (b) Capacitive-Plate Assumption.

Equation (23) can be used to specify d* in terms of the fiber volume fraction X; Combining

Equations (22) and (23) gives d* in terms of the microstructural parameters d and dy, .

d"=(1-X,fd+d,). (24)
For the square-packing geometry,
nd?
=— (25)
©oa(d+d,)

Combining these relationships yields the effective interlayer distance d* in terms of the

microstructural parameters:

(I—Xf)\/;df
20X,

d = (26)

13



The question arises as to how many fiber layers are necessary for the square-packed/capacitive-layer
model to be appropriate. The condition of uniform fiber volume fraction (equation [23]) is not
necessarily met when the number of fiber layers, n, is low. Equation (27) gives the ratio of effective

polymer thickness to total thickness for the square-packed model:

Lt (n_lh‘
= } 27
t (n-1)d"+nd; @D

Figure 5 shows the plot of equation (27) (with X¢ = 0.60) vs. n, indicating a convergence to the
expected value of 0.40. APC-2 has a fiber volume fraction of approximately 0.60 and each prepreg
ply has between 16 and 20 fiber layers upon consolidation. The results of Figure 5 indicate that it is

plausible to use the capacitive-layer model for laminates of nominally one ply and greater.

0.42

0.4

0.38 pa
el /-

0-0 A

0.32

Ratio of effective to actual thickness

o 16 32 48 64
Number of fiber layers, n
Figure 5. Plot of Equation (27) Showing the Convergence of the Ratio of Effective to Actual

Thickness in the Square-Packed Capacitive-Layer Model for Fiber-Fiber
Interactions Through the Thickness of a Laminate Consisting of n Fiber Layers.

14



3. Model Predictions

Figure 6 shows an outline of a computer algorithm used to determine the effective heating
parameter y. Blocks 1 and 2 are based on the relationships previously discussed. Block 3 is the
summation of the ply-ply interactions. Most case studies were performed using laminates with only
one change in ply orientation through the thickness. The program calculates yjd*, where j is defined
in Figure 3. The quantity b = ho/d* is used so that all calculated quantities are in terms of the

model’s capacitive-layer separation distance d*, and the result is nondimensional.

Laminate Characteristics:
Material Characteristics: * # m layers above interface
« Fiber Volume Fraction « # n layers below interface
« Fiber Diameter « interply matrix -rich region

of thickness, h,,

i i Find (1/h) ,;as Summation
Fullgtg;iec;ve Througch Thickness
Spaci yd of Laminate Using
pacing, d ¢ “CapLayer” Code

l [
Output:
Sum of All Ply-Ply Effective (1/h), ¢ Values
Imeractiox}s for the for Each Fiber-Fiber
Laminate Interaction Within Each
Ply-Ply Set

[ 1
Effective (1/h) Values for Each
Fiber-Fiber Interaction (Node) »
in the Laminate —

Figure 6. Outline of Capacitive-Layer Computer Algorithm.

3.1 Effect of Interply Thickness. Three relevant cases for polymer thickness of ho = 125 um,
25 pm, and 3.2 um are presented as examples of model prediction. Table 2 provides the program
input parameters for the three cases. The calculations described to this point do not take into account
the distribution of heating per unit thickness of the regions j. Since region j= 1 is of thickness hg and

regions j = 2, ..., n or m are of thickness d*, the normalized yd* values are used. The ratio of

15




-interfacial heating to total heating in the ply-ply interface region is given in Table 3 for each case. As
the interply matrix-rich region decreases, Y increases, as expected, and v; decreases. Heating,
however, is a function of the volume of material to which energy is being supplied; so, as the third
and fourth columns of Table 3 indicate, the normalized output representing heating increases for the
entire laminate (at even faster rates) with decreasing interply thickness, hy. The fifth column
indicates the ratio of interface to total laminate heating, as defined in equation (21). The high ratio
drops off rapidly with increasing interply thickness. Consequently, maximum interfacial heating is
expected to occur when the thickness of the laminate is maximized and the thickness of the

interfacial polymer is minimized.

Table 2. Input Parameters for Case Studies of Fiber-Fiber Submodel. X;=0.60, d¢=7 pm,
20 Fiber Layers Per Ply, and d* = 3.2 um.

Case | 0° Ply Layers, m 9-0“’ Ply Layers, n I Interply Thickness, hy | b =hyd* "
| | SEE— pe—— - I
1 60 60 125 pm (5 mil) 40 |
2 60 60 25 pm (1 mil) 8 |
3 60 60 3.2 um (1/8 mil) 1 I

Table 3. Comparison of Y.t and y; for the Example Cases in the Fiber-Fiber Submodel.
Normalization Occurs Against the Ratio of Interface Thickness to Effective Fiber
Layer Spacing From Table 2.

49, 2 (3) Q) &)
Y1/Yiota
Case | b=hyd* | yd* Yiomd* Normalized | Normalized | Ratio of Col.
Yid* Yeorard* (3) to (4
[ 1 40 18.31 28.66 0.46 0.18 2.55
2 8 12.95 65.39 1.62 0.57 3.18
I| 3 1 4,98 82.68 4,98 0.68 _ 7.32

A parametric study was performed to ascertain the effect of varying the interply thickness, hy,
while maintaining a constant ply thickness of a single ply on either side of the ply-ply interface

([0/90]). Values of df =7 um, X = 0.60, and m = n = 20 were input into the model with various

16



values of b = hy/d*. The values for fiber diameter and fiber volume fraction are within the range of
values reported by the manufacturer and in the literature [3—5] and the number of fibers through the
thickness is within the range of values determined in a micrographical study [6]. Graphical results
are presented in Figures 7 and 8. Figure 7 plots nondimensionalized “energy” input to the total
laminate and the “center” interply region vs. nondimensionalized interply thickness. The series
solution is the exact solution of the model. The integral solution is provided to qualify its use in the

optimization study.

Note that, at low interply thickness (b<~13) in Figure 7, the energy production in the interply

region increases with increasing hy then decreases slowly past that point.

From equation (21), the ratio of total energy input to the resin-rich interply region to total energy
input to the entire laminate was examined and found to increase as the interply region increased.
Figure 7 indicates this trend since the total energy input into the interply region is significantly lower
than that of the laminate and the ratio decreases significantly with increasing interply thickness. This
difference is shown quantitatively in Figure 8 as the ratio of specific energy or heating in the interply
region to that in the laminate (per unit thickness). Figure 8 illustrates the important relationship of

increasing localization of heating with decreasing interply resin thickness.

3.2 Varying Ply Thickness. Increasing the thickness of the 0° and 90° plies within the laminate
has the opposite overall effect of independently increasing the interply thickness. The results of a
parametric study involving several [0,/90,] cases are graphically depicted in Figures 9 and 10, where

the y-axis variables are equivalent to Figures 7 and 8, respectively, of the last section.

A comparison of Figure 10 with Figure 8 shows that it is beneficial to decrease the thickness of
the polymer interply region while increasing the number of plies for maximized interfacial heating.
A slight decrease in hy can possibly produce more significant increases in heating than can a larger

magnitude increase in the ply thickness. Figure 8 suggests that heating can be controlled by careful
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control of the thickness of the resin-rich interply region—a relatively easy parameter to control in

processing, although with possible detrimental effects on mechanical properties for large h,.

4. Discussion

While the model presented in this paper determines the through-thickness distribution of the
effective parameter of heating v, it must be combined with the planar voltage distribution model [2],
the local heat-generation model [1], and a finite element heat-transfer model [6], which, together,
yield the thermal distribution of heating at the surface of the laminate. Extensive testing that strongly
supports the combined models’ predictions has been performed. The details of the experimental
procedure used and a ’comprehensive verification of the global model [6] have been provided
separately. A full discussion of the testing procedure and the other models is not within the scope of
this paper; however, a few results are provided to initially verify the through-thickness model as a

component of the global model, as well as the validity of the dielectric loss mechanism.

The two key parameters discussed previously are the polymeric interface thickness and the actual
ply thickness (or number of plies) in a ply-ply interaction. The predicted effect of varying the
interface thickness on the heating parameter y (Figure 8) indicated a rapid decrease in y with
increasing interface resin thickness ho. Figure 11 compares predicted and experimental steady-state
surface temperatures at one point for [0/90] specimens manufactured with varying thicknesses of
interply polymer. The experimental error bars (heavy lines) are indicative of the +1 °C reading of the
digital thermocouple and an additional +5% error on the accuracy of the placement of the
thermocouple. The theoretical results’ error bars (light lines) are the results of the application of
‘upper and lower bounds on all known parameters, including geometrical and material property
characteristics. Similar results in consideration of the ply thickness are shown in Figure 12. While
these results do not provide a direct proof of the proposed model, they do provide persuasive

evidence supporting the combined models’ foundation.

20



2707
Expenimental Results
24 I Themocouple No. 5
1 Coil Cunent = 10 amps
~ 21 '
=
LT)W) T I T
» 18
g 1
1)
1}
S 5ol —2 e
—
L
12
i
= ¥
£ 90 ' L
;'g .
) W
L 60 X
= S
.
30
0 T T T T T
0 1 2 3 4 5

Nominal Interface Resin Thickness (mil)

Figure 11. Comparison of Predicted and Observed Surface Temperatures Showing Effect of
Increasing Interface Thickness (ho) on Equilibrium Surface Temperature. The
Heavy Lines Represent the Experimental Results While the Thin Lines Represent
Predicted Results With Upper and Lower Bounds.

21




27
Expernimental Results %
2407 Themocouple No. 5 ,
Coil Cument =10 am %
210
: :
>~ I
[-P) 1
g | .
: 3
-3}
g 150 T f
= 4
£ 120 —¥
S -
E‘ 90 | +
L 3
60 =
=
-
30
0 | | l
1 2 3

Number of Plies on Each Side of Interface (M = N)

Figure 12. Comparison of Predicted and Observed Surface Temperatures Showing Effect of
Increasing the Number of Plies on Each Side of the Interface. The Heavy Lines
Represent the Experimental Results While the Thin Lines Represent Predicted
Results With Upper and Lower Bounds.

22



Other observations further support the dominate role of dielectric losses rather than joule losses in
the induction heating of carbon-fiber composites. As indicated previously, observed heating patterns
show signiﬁcant' heating only where conductive paths overlap. Different polymers were used to
separate carbon-fiber laminae. Heating characteristic changed with the change in polymer interlayer.
This supports the proposal that heating is due to dielectric losses in the polymer since the dielectric
behavior of the polymers (PEEK and PEI) have different dielectric loss spectra. An alternate
explanation for the heating behavior could be attributed to dielectric breakdown in the thin polymer
layers between fibers. Such a breakdown would provide conducting paths to connect the conducting
carbon fibers. However, cycle tests show no change in heating rate between the first cycle and later
cycles. If dielectric breakdown had occurred, the later cycles should have exhibited different heating
characteristics. The fact that rapid heating is attainable at relatively large interply thicknesses further

discounts the role of dielectric breakdown, as well as charge transfer mechanisms.

S. Summary

A capacitive-layer model has been developed to establish the mechanisms for fiber-layer
interaction. The model uses a capacitive-layer parallel-plate assumption to develop the equations that
describe the electromagnetic interaction between fibers in adjacent plies and the resulting reaction of
the interply and interfiber polymeric regions to the induced electric fields. This model effectively
incorporates the key microstructural (fiber diameter, fiber volume fraction) and macrostructural
(interply thickness, laminate thickness) characteristics of the laminated plate. Each of these
parameters affects the heating in a manner independently predicted by the capacitive-layer model.
The model utilizes a nondimensional parameter, which represents the thermal generation within a ply-
ply interaction. This parameter, yd*, was then normalized with respect to volume for comparison
with other systems and between polymeric regions within the laminate. Note that the model initially
assumes that each opposing fiber-fiber pair is separate from its neighbors and carries an equivalent
voltage, V,,. When the model superimposes the system of fibers into its actual form, the actual

voltage distribution is proportional to the square root of vy times the equivalent voltage V.
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Parametric studies identified the desired extremes of key parameters for overall thermal generation
and preferential (or nonpreferential) heating in the ply-ply interface region. These studies showed
that, in order to maximize the heating at any point in the plane of the cross-ply or angle-ply laminate,
the fiber volume fraction should be maximized, the fiber diameter should be minimized, the interply
resin thickness should be minimized, and the ply thickness above and below the interface should be
maximized. This model has been indirectly verified through a global model analysis and the

execution of a rigorous experimental matrix.
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